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Economists have long argued that many recipients of energy-efficiency subsidies may be “non-additional,” get-
ting paid to do what they would have done anyway. Demonstrating this empirically has been difficult, however,
because of endogeneity concerns and other challenges. In this paperwe use a regression discontinuity analysis to
examine participation in a large-scale residential energy-efficiency program. Comparing behavior just on either
side of several eligibility thresholds, we find that program participation increases with larger subsidy amounts,
but that most households would have participated even with much lower subsidy amounts. The large fraction
of inframarginal participants means that the larger subsidy amounts are almost certainly not cost-effective.
Moreover, the results imply that about half of all participants would have adopted the energy-efficient technol-
ogy even with no subsidy whatsoever.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Global energy consumption is forecast to increase 56% by 2040.
While the energy mix is becoming somewhat less carbon-intensive,
carbon dioxide emissions are still forecast to increase by 45% over the
same period.1 There is a wide agreement among economists that the
best policy to reduce carbon dioxide emissions and other negative
ssants at UC Berkeley, the U.S.
aryland, Michigan State, the
rsity, aswell as two anonymous
pported inpart under a general
n (500-08-006) to the Energy
ion (DGE 1106400) Graduate
received any financial compen-
elationships that relate to this

1 510 643 5180.
hower),

ional Energy Outlook”, released
sed from350 quadrillion Btu in
2040. Energy-related carbon di-
1990 to 30 billion in 2010, and
externalities from energy use would be a Pigouvian tax. Although
there has been some recent progress, the vast majority of carbon diox-
ide emissionsworldwide remain untaxed and there aremany countries,
including the United States, where it seems unlikely that there will be
large-scale carbon policy in the near term.

Instead what is receiving much attention is energy efficiency.
Electric utilities in the United States, for example, spent $34 billion
on energy-efficiency programs between 1994 and 2012.2 Energy-
efficiency measures like appliance replacement, industrial process
changes, andweatherization have the potential to greatly reduce energy
consumption (National Academy of Sciences et al., 2010). Proponents of
energy-efficiency policies argue that these savings are available at very
low cost (McKinsey and Company, 2009). Thus, energy-efficiency poli-
cies are promoted as “win–win” policies that reduce both private energy
expenditures and the externalities associated with energy use.

Despite all of the resources aimed at energy-efficiency programs,
there is a surprisingly small amount of direct evidence evaluating
their effectiveness. A recent review paper emphasizes this lack of
2 U.S. Department of Energy, Electric Power Annual, 1995–2013. All dollar amounts in
the paper are reported in year 2010 dollars. Spending increased every year from 2004 to
2012, with $4.2 billion in 2012.
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4 For instance, the two largest utilities in California offer rebates for energy-efficient
heating and cooling equipment that vary across 16 climate zones. These zones were
established by California law in 1978 as a function of climate characteristics. Cities can
straddle multiple climate zones, and there are large discontinuous changes in rebates at
climate zone boundaries. For example, during 2013 Southern California Edison offered
three different subsidy amounts ($550, $850, and $1100) for central air conditioners. Oth-
er eligibility thresholds that would be amenable to RD analyses include requirements
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evidence and goes on to argue that there is, “great potential for a new
body of credible empirical work in this area, both because the questions
are so important and because there are significant unexploited opportu-
nities for randomized control trials and quasi-experimental designs that
have advanced knowledge in other domains” (Allcott and Greenstone,
2012).

We are particularly interested in the question of additionality. Many
energy-efficiency programs work by subsidizing households and firms
to adopt energy-efficient technologies. A fundamental question in eval-
uating the cost-effectiveness of these programs is howmany of the par-
ticipants would have adopted these technologies with a lower subsidy,
or even with no subsidy at all. Economists have long argued that many
participants in energy-efficiency programs may be non-additional or
“free riders” (Joskow andMarron, 1992), but demonstrating this empir-
ically has been difficult.3

Determining the causal relationship between subsidies and technol-
ogy adoption is challengingbecause onemust construct a credible coun-
terfactual for adoption in the absence of the policy. Cross-sectional
comparisons are misleading because places with generous subsidies
are different from places with less generous subsidies. For example,
“green” communities like Berkeley, California have more generous sub-
sidy programs but also more eager adopters. Similarly, although pro-
grams change over time, it is difficult to separate the causal effect of
these changes from other time-varying factors. Changes over time in
energy-efficiency subsidies are correlated with changes in technology,
pricing, and consumer preferences.

In this paper we address these challenges using a regression discon-
tinuity (RD) analysis. Many energy-efficiency programs have eligibility
cutoffs and our paper illustrates how these thresholds can be used to
measure inframarginal participation. We apply this approach to a na-
tional appliance replacement program in Mexico. We first examine
the eligibility thresholds carefully, demonstrating clear discontinuous
changes in subsidy amounts and testing formanipulation of the running
variable.We then turn to themain analysis,finding that programpartic-
ipation increases noticeably with larger subsidy amounts. For example,
when a refrigerator subsidy increases from $30 to $110 (both in U.S.
2010 dollars), the number of participants increases by 34%. Thus, the
participation elasticity is substantial. However, it is also evident that
there are a large number of inframarginal participants. At this threshold,
for example, our estimates indicate that about 75% of householdswould
have participated in the program even with the lower subsidy amount.
For the four main thresholds in our analysis we find that 65%+ of
households are inframarginal. This large fraction of inframarginal
households means that the larger subsidy amounts are almost certainly
not cost-effective because each actual increased participant costs a large
amount in additional program funds.

We next use the observed changes in demand at these four
thresholds to infer what fraction of participants would have partici-
pated with no subsidy whatsoever. Under reasonable assumptions,
the estimates imply that about half of all participants would have re-
placed their appliances with no subsidy. We then discuss the implica-
tions of non-additionality for cost-effectiveness and welfare. These
non-additional participants add cost to the program without yielding
any actual reductions in energy consumption. When the marginal cost
of public funds is larger than one or when there are indirect program
costs then it does not make sense to think of these payments as pure
transfers. Our results also demonstrate the potential for cost savings if
program designers can target subsidies towards groups where the
number of likely non-additional participants is low.
3 The term “free rider” has long been used in the context of energy-efficiency programs
to describe participants who receive a subsidy for doing something they would have done
anyway. This is distinct from the use of the term in economics. Thewell-known “free rider
problem” in economics is that individuals underinvest in public goods because they donot
internalize the benefits to others. To avoid confusion we use the term “non-additional”
throughout the paper.
Our paper is the first that we are aware of to use RD to study par-
ticipation in an energy-efficiency program. We see broad potential
for applying this approach in evaluating similar programs. Although
eligibility requirements vary widely across programs, the desire to
simplify program design often results in the kind of discrete thresh-
olds that we exploit here.4 In addition, energy consumption is typi-
cally carefully measured for large numbers of participants and non-
participants. Both of these features make RD a natural approach for
causal inference in this context. Relative to the alternative of ran-
domized control trials (RCTs), RD is limited by its focus on specific
thresholds. However, RD is easier and less expensive. In addition,
RD analyses with administrative datasets have more power and
thus can measure smaller effects than typical RCTs.

Most previous studies of additionality in similar programs have
been of a much smaller scale (see, e.g., Hartman, 1988), or based on
stated-choice experiments (Revelt and Train, 1998; Grosche and
Vance, 2009; Bennear et al., 2013). Several related papers look at the
impact of subsidies on adoption of energy-efficient vehicles (Chandra
et al., 2010; Gallagher and Muehlegger, 2011; Sallee, 2011; Mian and
Sufi, 2012). There is also a small literaturewhich addresses additionality
indirectly by comparing realized aggregate savings at the utility level to
engineering estimates (Loughran and Kulick, 2004; Auffhammer et al.,
2008; Arimura et al., 2012). Our paper differs from all of these previous
studies because of the RD research design. Probably the closest existing
study is Ito (2013), which uses an RD analysis to examine a California
policy that paid households to reduce their electricity consumption in
Summer 2005.

The paper is also related to a broader literature that examines
government programs that subsidize socially-beneficial behavior. A
key issue with these programs is the need to distinguish between
additional and non-additional participants. Examples include tax
subsidies for charitable giving (Feldstein and Clotfelter, 1976), subsi-
dies for building low-income housing (Sinai and Waldfogel, 2005),
conditional cash transfer programs (De Janvry and Sadoulet, 2006),
pollution offset programs (Schneider, 2007), and environmental
conservation programs (Sánchez-Azofeifa et al., 2007).5

2. Conceptual framework

2.1. Technology adoption with externalities

In this section we propose a simple framework for thinking about
the costs and benefits of energy-efficiency subsidies. We illustrate the
welfare loss introduced by transfers to inframarginal participants and
show how the optimal subsidy amount depends on the relative shares
of marginal and inframarginal participants. We focus on the adoption
of an energy-efficient technology, but the same basic framework applies
to many other types of government programs that subsidize socially-
beneficial behavior.

We begin with a simple graphical partial equilibrium analysis.
Fig. 1 describes the market for an energy-efficient technology.
Along the x-axis is the number of adopters. Demand is given by the
about the vintage of the home, size or characteristics of the households' current equip-
ment, and, for need-based programs, household income.

5 In this broader literature there are a few studies that use RD. Baum-Snow andMarion
(2009) examine the effect of tax credits for building low-income housing, exploiting a dis-
continuous increase in the credit amount in census tracts where more than 50% of house-
holds qualify for means-tested government housing assistance. Filmer and Schady (2011)
study a conditional cash transfer program in Cambodia where program eligibility is limit-
ed to households scoring below a specified level on a government poverty index.
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Fig. 1. The market for an energy-efficient technology.
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downward-sloping private marginal benefit curve. The benefits of
adoption vary across potential adopters due to differences in expect-
ed utilization and other factors. Supply is described by the private
marginal cost curve.

The privately optimal level of adoption is labeled in the figure as Q0.
These consumers adopt the technology purely on the basis of private
benefits, even with no subsidy or other form of government interven-
tion. If there are no externalities, then Q0 is socially optimal. Once exter-
nalities are introduced, however, this is no longer the case. The figure
illustrates the case in which there is a positivemarginal external benefit
from adoption, so the social marginal benefit exceeds private marginal
benefit. The socially optimal level of adoption is labeled in the figure
as Q⁎. This optimum is defined as the intersection of the social marginal
benefit and privatemarginal cost curves. The optimal subsidy is s⁎. With
this subsidy, adopters between Q0 and Q⁎ are additional. They adopt
under the subsidy and do not adopt without it.

The total amount paid in subsidies is indicated by the rectangle
A/B/C. Rectangle A is a transfer to non-additional participants, i.e. con-
sumers who would have adopted the energy-efficient technology
even with no subsidy whatsoever. Triangle B is excess payment to con-
sumerswho are induced to adopt because of the subsidy.Most adopters
receive a subsidy that is more than the minimum amount necessary to
induce them to adopt. And triangle C is the payment required to make
adopters between Q0 and Q⁎ indifferent between adopting and not
adopting.

Before proceeding it is worth highlighting a couple of important
assumptions. First, we have assumed that the external benefits
from adoption are the same for all potential adopters. When external
benefits differ there can be gains from targeting energy conservation
policies towards high value participants (Allcott and Mullainathan,
2014; Allcott et al., 2014). We have also assumed constant marginal
costs. With increasing marginal costs the analysis is similar but the
incidence of the subsidy is partly on sellers. As a result there are
“non-additional recipients” on both sides of themarket. Subsidies in-
crease the equilibrium price of the good, leading to higher revenues
for sellers even for transactions which would have occurred anyway.

2.2. Incorporating pre-existing taxes and other distortions

This partial equilibrium analysis ignores interactions with taxes and
other pre-existing distortions. Consider the following welfare function,

W ¼ U Q sð Þð Þ−C Q sð Þð Þ þ τQ sð Þ þ Q sð Þs−ηQ sð Þs: ð1Þ
Here Q(s) is the quantity of technology adoption, which is a weakly
increasing function of the subsidy s. U(·) and C(·) are private benefits
and costs from the energy-efficient technology. In the graphical analy-
sis, these correspond to the areas under the private marginal benefit
and private marginal cost curves to the left of Q. τ is the constant exter-
nal benefit of technology adoption derived from, for example, reduced
carbon dioxide emissions.

The final two terms reflect general equilibrium effects. The subsidy
payments are a transfer from taxpayers to adopters in the amount Q(s)
s. The efficiency cost of interactionswith pre-existing distortions is denot-
ed η. If η is one, then there is no efficiency loss associated with the trans-
fers, and the gains by adopters exactly offset the costs to taxpayers.

The welfare change from a marginal increase in the subsidy is given
by,

dQ
ds

U0 Q sð Þð Þ−C0 Q sð Þð Þ þ τ− η−1ð Þs� �
− η−1ð ÞQ sð Þ: ð2Þ

The additional adoption induced by the subsidy increase is dQ
ds . The

left-hand term gives the welfare effect of bringing these marginal par-
ticipants into the program: private marginal benefits minus private
marginal costs, plus external benefits, minus the efficiency cost of fi-
nancing the subsidy payments to new participants. The right-hand
term gives the welfare cost of increased payments to inframarginal par-
ticipants: The Q(s) participants already adopting the technology each
receive an infinitesimal increase in subsidy payment, financed at a
cost of η. Thewelfare effects of increasing the subsidy depend on the rel-
ative numbers of marginal and inframarginal participants. If dQ

ds is large
relative to Q(s), then the left-hand term matters more than the right-
hand term. As the subsidy level increases, Q(s) becomes larger and pay-
ments to inframarginal participants becomemore and more important.

If η is equal to one then Eq. (2) simplifies considerably and it is opti-
mal to set the subsidy equal tomarginal external benefits (τ). This is ex-
actly what we described in Fig. 1 with s⁎ andQ⁎. However, if η is greater
than one then the optimal subsidy level is belowmarginal external ben-
efits. The optimal subsidy amount balances the benefits of increased
adoption with the full welfare costs, including the general equilibrium
efficiency costs of larger transfers.

The value of η is informed by a large literature on the general equilib-
rium effects of environmental taxes and subsidies, which we quickly
summarize here. See, e.g., Bovenberg and Goulder (2002) and refer-
ences therein. These policies create “tax interaction” and “revenue
recycling” effects. Environmental taxes exacerbate pre-existing distor-
tions in the economy, for example, by further decreasing the real
wage in the presence of a labor tax (the tax interaction effect). At the
same time, environmental taxes also generate revenues, allowing
labor and other distortionary taxes to be lower than they would be oth-
erwise (the revenue recycling effect). A series of analytical and numer-
ical studies have concluded that, for taxes, tax interaction is more
important than revenue recycling, so that optimal tax rates on external-
ities are generally below marginal damages (Bovenberg and Goulder,
1996, 2002). One reason for this is that environmental taxes discourage
consumption of the taxed good, which erodes the tax base and under-
mines revenue recycling.

A symmetric set of results holds for environmental subsidies. Subsi-
dies for “clean” goods increase real wages, thereby decreasing the
distortionary effects of labor taxes (the tax interaction effect). However,
subsidies also require labor and other taxes to behigher than theywould
be otherwise, exacerbating distortions (the “revenue-financing” effect).
In our framework, η represents the net of these two effects. The litera-
ture suggests that, for subsidies, the revenue-financing effect exceeds
the tax-interaction effect (Parry, 1998). Thus, η is greater than one and
the optimal level of subsidy is positive, but below marginal external
benefit, just like the optimal level of tax is positive, but below marginal
external damages. Throughout the paper, we refer to η as the efficiency
cost of transfers.



Table 1
Subsidy amounts.

Program tier Direct cash payments Maximum loan amount Consumption levels, air conditioners Consumption levels, refrigerators

1 2200 pesos ($170) 3400 pesos ($270) 251–500 76–175

2 1400 pesos ($110) 4200 pesos ($330) 501–750 176–200

3 400 pesos ($30) 5200 pesos ($410) 751–1000 201–250

4 No cash payment 8700 pesos ($690) 1000+ 250+

Notes: This table describes the direct cash payments and maximum loan amounts available to households with different levels of average historical electricity consumption (in kilowatt-
hours per month). For further details, see Online Appendix. Dollar amounts are reported in U.S. 2010 dollars using the average exchange rate for 2010 (12.645 pesos per dollar). For ex-
positional clarity, we rounded all dollar amounts to the nearest $10. Households with consumption below the first tier were ineligible for subsidies.
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The preceding analysis assumes that the government must pay all
adopters the same subsidy. Targeting subsidies to different groups
based on expected benefits and costs could increase welfare substan-
tially. In the extreme, perfect price discrimination would pay each indi-
vidual adopter the minimum amount they require to adopt. There
would be no payments to inframarginal participants and the right-
hand term in Eq. (2)would disappear. However, in practice, equity con-
cerns, imperfect information, and other factors prevent perfect price
discrimination and limit group-level targeting.

The main takeaway from this section is that, in general, the optimal
subsidy amount is lower than the marginal external benefits. The wel-
fare effects of a subsidy depend critically on the effect of the subsidy
on program participation. If dQds is small relative to the number of existing
participants, then the benefits from increased adoption will be small
relative to the efficiency costs of the payments to inframarginal partici-
pants. Accordingly, this is wherewe focus our attention in the empirical
analyses which follow.
6 According to Banco de Mexico, “Indicadores Básicos de Tarjeta de Crédito” October
2012, , credit cards in Mexico charged an average interest rate of 25.3% in 2011. This is
not a perfect measure. On the one hand, not all households have access to credit cards,
and the interest rates on other forms of borrowing will vary. On the other hand, collater-
alized loans for durable goods purchases typically can bemade at lower rates.Most partic-
ipants took out at least some loans, suggesting that the market cost of borrowing exceeds
13.8% in most cases.
3. Program background and construction of dataset

3.1. Background

Our empirical analysis focuses on a large-scale energy-efficiency
program in Mexico. The program was launched in March 2009 and
ended in December 2012. During this period, the program subsidized
the replacement of 1.9 million refrigerators and air conditioners with
energy-efficient models. Davis et al. (forthcoming) compare electricity
consumption by program participants before and after appliance re-
placement, finding that realized savings were considerably smaller
than what was predicted by ex ante analyses. There was no attempt in
this previous work, however, to distinguish between additional and
non-additional participants, nor was there any examination of the pro-
grams eligibility thresholds or RD analysis.

To participate in the program a household had to have a refrigerator
or air conditioner that was at least 10 years old and agree to purchase a
new appliance meeting Mexican energy-efficiency standards. The old
appliances were transported to recycling facilities and disassembled.
The refrigerator subsidies were available nationwide. For the air condi-
tioner program, a household needed to live in one of four officially-
designated climate zones with a mean summer temperature of at least
30 °C (86 °F); this included about one-quarter of all households.

Table 1 describes the subsidies available under the program. The di-
rect cash payments came in three different amounts, approximately cor-
responding to $30, $110, and $170 (all in U.S. 2010 dollars). Eligibility for
the different subsidy amounts depended on a household's average his-
torical electricity consumption, calculated over the previous year. There
was a minimum consumption level below which households were inel-
igible for subsidies. Above this minimum, the cash payment amount de-
creased with a household's consumption level. This structure was
designed to target the larger subsidies to lower-income households.
The program also offered on-bill financing at an annual interest rate
of 13.8%, repaid over four years. At the first two thresholds, the increase
in maximum loan amount exactly equals the decrease in cash. If house-
holds would otherwise have financed the purchases using credit cards,
the increase inmaximum loan amount offsets about 18% of the decrease
in cash subsidies at these thresholds.6 At the highest consumption
threshold, the increase in maximum loan amount greatly exceeds the
decrease in direct cash payments. For households with a typical cost of
borrowing who take the full loan amount, the economic value of the
program actually increases at this threshold.

There are several features of this program that make it particularly
conducive to an empirical analysis. First, retailers did not have any dis-
cretion in assigning subsidy amounts. Participating retailers determined
which subsidy a household was eligible for by entering the household's
account number into a website designed for this purpose, and this on-
line record became part of the paperwork necessary for the retailer to
be reimbursed. This lack of scope for retailer discretion is important be-
cause even a small amount of selection at these thresholds would have
been a threat to our identification strategy.

Another nice feature of the program is that participants received
these subsidies immediately. In order to participate, a household was
required to show a recent electricity bill and an identification card, but
therewas no paperwork required and no delay in receiving the subsidy.
This differs from appliance subsidy programs in the United Stateswhich
typically require participants to fill out and mail application forms and
proofs of purchase, and then wait for a rebate check to arrive in the
mail. In programs for which there are “hassle” costs like these, not all el-
igible households will participate. And the amount of selection depends
on the size of the subsidy, making it difficult to interpret differences in
participation across subsidy levels.
3.2. Construction of the dataset

A key feature of our analysis is the use of high-quality, household-
level microdata, both about the program participants and about the en-
tire pool of potential participants. The fact that we observe eligibility for
non-participants is important because, as usual, the objective in the em-
pirical analysis is to construct a credible counterfactual, and this is hard
to do without information about the broader pool.

The first component of this database is a two-year panel dataset of
household-level electric billing records describing bimonthly electricity
consumption for the universe of Mexican residential customers from
May 2009 through April 2011. The complete set of billing records



71J. Boomhower, L.W. Davis / Journal of Public Economics 113 (2014) 67–79
includes data from 25,786,609 households. This represents the entire
pool of potential participants in the program.

The second component of this database is a record of all households
who participated in the program between March 2009 and June 2011.
In the complete dataset there are a total of 1,162,775 participants. We
merged this list with the electric billing records using customer account
numbers.We used our database to calculate average historical electricity
consumption for each household according to the program rules. For
details see the Online Appendix.

We focus on the 237,552 participants in 2011 because calculating
average historical electricity consumption for earlier participants
would require data from before May 2009, the first month in our billing
records. For each participant, we know the exact dates of purchase and
replacement, whether the appliance was a refrigerator or an air condi-
tioner, and the amount of direct cash payment and loan received.

4. Empirical strategy

4.1. Estimating equation

Our empirical strategy exploits the discrete eligibility thresholds
that determined whether a household was eligible for zero subsidy,
$30, $110, or $170. There are six total thresholds; three for air condi-
tioners and three for refrigerators. At each of these thresholds, we use
a standard RD estimating equation (Lee and Lemieux, 2010):

1 Participate½ �i ¼ α þ f Xið Þ þ ρ1 Below Threshold½ �i þ ηi ð3Þ

where 1[Participate]i is an indicator variable equal to one if a household
participated in the program and zero otherwise. We include in the re-
gression f(Xi), a polynomial in average historical electricity consumption,
and 1[Below Threshold]i an indicator variable equal to one if the
household's average historical electricity consumption was below the
given threshold. The coefficient of interest is ρ, which measures the dis-
continuous change in program participation at the threshold. Moreover,
we normalize Xi to be equal to zero at the threshold so the coefficient α
corresponds to the predicted probability of participating just below the
threshold, and α + ρ corresponds to the predicted probability just
above the threshold. In terms of the conceptual framework described
in Section 2, ρ is the empirical analog of dQ

ds , and α is the empirical analog
of Q(s).

The error term ηi captures unobserved determinants of the participa-
tion decision. An important advantage of RD is that it requires a consid-
erablyweaker identifying assumption than other approaches. Hahn et al.
(2001) show that identification with RD requires that the conditional
mean function E[ηi|Xi] is continuous at the discontinuity. In the limit,
one is comparing outcomes within an arbitrarily small neighborhood
around each threshold and the identifying assumption requires only
that there not be a discontinuous change in these other factors that oc-
curs exactly at the eligibility thresholds. Of course, in practice there are
few observations within an arbitrarily small neighborhood around
these thresholds, and so there is a trade-off between bias and efficiency.
Flexibly parameterizing the polynomial f(Xi), allows us to expand the
sample to include households farther away from the threshold.

We report results using several different bandwidths. In our pre-
ferred specification, we include all households within 100 kWh of the
thresholds for air conditioners, and within 50 kWh of the thresholds
for refrigerators. The wider bandwidth for air conditioners reflects
that these thresholds weremuch higher (500, 750, and 1000 kWh com-
pared to 175, 200, and 250) and the density of households in that part of
the distribution is lower. With refrigerators, the thresholds are close
enough together that, in some cases, the bandwidth includes more
than one threshold. In the results which follow we use one estimating
equation per threshold, butwe include intercept terms for any addition-
al thresholds.
4.2. Validity of research design

4.2.1. The discontinuity in subsidy amounts
Fig. 2 plots the fraction of participants who received the larger sub-

sidy as a function of average historical electricity consumption. The dots
representmean values for three kilowatt-hour bins. In all six cases there
is a clear discontinuity at the threshold. Almost all households with av-
erage historical consumption below the threshold receive the higher
subsidy amount and almost all households with average historical con-
sumption above the threshold receive the lower subsidy amount. Fig. 2a
is typical of all three air conditioner thresholds. The share of participants
receiving the larger subsidy falls from near one to near zero. Even with-
in very narrow bandwidths around these thresholds, we are able to cor-
rectly predict subsidy levels for 99%+ of all participants (see the Online
Appendix for details).

The discontinuities are less sharp for refrigerators. Fig. 2d is typical of
the three refrigerator thresholds. Near the threshold, a small number of
participants receive a different subsidy than we would have predicted.
This is due tomeasurement error in our reconstruction of average histor-
ical electricity consumption. As we explain in more detail in the Online
Appendix, the program rules for refrigerators were especially complicat-
ed, introducing a small amount of measurement error for some observa-
tions. Battistin et al. (2009) show that this type of measurement error
biases sharp RD estimates downward in proportion to the fraction of ob-
servations measured with error, but that the fuzzy RD estimator is unbi-
ased as long as the measurement error is uncorrelated with the subsidy
amount. In practice, because a small share of observations is measured
with error, sharp RD and fuzzy RD produce very similar estimates.

4.2.2. Checking for manipulation of the running variable
A standard concern with RD analyses is manipulation of the running

variable. If participants could completely or partially manipulate their
treatment status, this would represent a substantial threat to the identi-
fying assumption. Understanding any strategic behavior in response to
eligibility thresholds is also of significant independent interest because
it may introduce inefficiencies, as agents alter their behavior to qualify
for more generous subsidies (Sallee and Slemrod, 2012).

Fig. 3 plots the frequency distribution of average historical electricity
consumption for all households. We use three kilowatt-hour bins and
include separate plots for air conditioners and refrigerators because
themeasure of average historical electricity consumption used to de-
termine eligibility was different for the two appliance types. Examin-
ing the smoothness of the running variable is a valuable first test for
manipulation (McCrary, 2008). If households were changing their
behavior to qualify for the more generous subsidy, we would expect
to see bunching to the left of the thresholds. For both appliance
types, the frequency distributions appear smooth across all eligibility
thresholds. This lack of evidence of manipulation is perhaps not sur-
prising given that it is difficult for a household to control its average
historical electricity consumption. Perhaps most importantly, this is
historical consumption, so at the time of participating in the pro-
gram, there is no scope for the household to go back and change its
electricity consumption patterns in the past.

Another standard RD specification test is to look for changes at the
threshold in covariates unrelated to the treatment variable. If manipula-
tion of the running variable leads to systematic sorting of households
around the threshold, wewould expect to see discontinuous differences
in household characteristics at the threshold. In our dataset, we do not
have any household-level covariates. Instead, we merged our dataset
with municipality-average household income from the 2010 Census.
Fig. 4 shows that municipality-average income is smooth across all eli-
gibility thresholds, suggesting that there is no discontinuous change at
the threshold in the affluence of the places where participants live.

Finally, we consider a more subtle form of strategic behavior. If a
household somehow learned that they just missed qualifying for a larg-
er subsidy, they could in theory wait one or more billing cycles, perhaps
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(b) Air Conditioners, 750 kWh Threshold
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(c) Air Conditioners, 1000 kWh Threshold
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(d) Refrigerators, 175 kWh Threshold

Subsidy falls from $170
to $110 at 175 kWh
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(e) Refrigerators, 200 kWh Threshold

Subsidy falls from $110
to $30 at 200 kWh
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(f) Refrigerators, 250 kWh Threshold

Subsidy falls from $30
to $0 at 250 kWh
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Fig. 2. The discontinuities.
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Fig. 3. Smoothness of running variable across subsidy thresholds.
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while intentionally reducing electricity consumption, and then reapply.
In practice the program structure made this unlikely.7 Moreover, in the
Online Appendixwe test for this explicitly by comparing participants' his-
toric average electricity consumption in the months before participation
to nonparticipants' historic average electricity consumption over the
same months. We find no evidence that participants were more likely
than nonparticipants to become eligible for larger subsidies immediately
before participating. Thus, there is no evidence of strategic delay.
7 Participating retailers determined whether a household was eligible by entering the
household's account number into a website designed for this purpose. Households could
not access this site without a retailer's login and password. The website reported the sub-
sidy level for which a household is qualified, but did not describe the intermediate calcu-
lations which determined eligibility or let a household know when it was close to a more
generous subsidy level.
5. Results

5.1. Graphical evidence

Wenow turn to ourmain results, first presenting graphical evidence
and then reporting regression estimates in Section 5.2 and alternative
specifications in Section 5.3. Fig. 5a and b plots program participation
against average historical electricity consumption for air conditioners
and refrigerators, respectively. We again use three kilowatt-hour
usage bins. The y-axis in these figures is the percentage of households
in each bin that participated in the program during our sample period.
For refrigerators the denominator is all Mexican households. For air-
conditioners the denominator is all Mexican households living in cli-
mate zones that were eligible for the air conditioner program.
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Fig. 4. Smoothness of household income across subsidy thresholds.
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It is first worth noting that there is essentially no participation by
households who used less than the minimum levels of electricity re-
quired for participation. This is reassuring, though not surprising
given the way the program was administered. The small number of
participating households to the left of the minimum eligibility
thresholds for refrigerators reflects a small amount of measurement
error in average historical electricity consumption.

For air conditioners, participation increases steadily between 250
and 500 kWh, levels off between 500 and 750, and then declines slowly
after 750. Our main interest is in behavior at the 500, 750, and
1000 kilowatt-hour thresholds. In the first two cases, there appears to
be a discontinuous decrease in participation at the threshold. The sec-
ond decrease is particularly visible and appears to occur exactly at the
threshold in which the subsidy amount decreases from $110 to $30. It
is difficult to make strong statements based on this graphical evidence
because the participation rate moves around across bins, but at this
threshold the participation rate appears to drop from about 1.5% to
about 1%. At the final threshold, where the cash subsidy amount falls
from $30 to zero, there does not appear to be any discontinuous change
in participation.

For refrigerators, participation follows a similar inverted “U” pattern,
peaking at about 1.8% near 150 kWh and then decreasing steadily be-
tween 150 and 300. At both the 175 and 200 kilowatt-hour thresholds
there are visible discontinuous decreases in participation. At the
250 kilowatt-hour threshold there is no apparent decrease. This general
pattern is similar to what is observed for air conditioners, with de-
creases at the first two thresholds and no visible decrease at the third
threshold.

For both appliance types, there is no observed change in partici-
pation when the subsidy falls from $30 to $0. As we discussed in
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Fig. 5. Program participation.
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Section 3.1, this threshold was different from the others in that there
was a large offsetting increase in the maximum loan amount. We
were expecting to see a much smaller change in participation at
this threshold, and the data appear to bear this out. The near zero
change in participation implies that, on average, the increase in max-
imum loan amount had about the same value to households as the
$30 decrease in cash. We find this very interesting, but in the regres-
sion analysis which follows we focus on the four other thresholds
where there is a clear and unambiguous change in the value of the
program.

5.2. Regression estimates

Table 2 reports RD estimates and standard errors from four sepa-
rate regressions. For each threshold we report the percentage of
households participating at each side of the threshold as well as
the percent change in participation. Because we have normalized
the running variable to be equal to zero at the threshold, these statis-
tics come right out of our estimating equation. From each regression,
column (2) reports the estimated intercept, column (3) reports our
estimate of the intercept plus our estimate of the discontinuous
change at the threshold, and column (4) reports the percent change
between the two. Columns (5) and (6) report the implied linear
slope of demand and price elasticity at each threshold.

Consistent with the graphical evidence, participation increases at all
four thresholds. All four changes are statistically significant (three at the
1% level, one at the 5% level). With air conditioners, the increases are
21% and 45%. For refrigerators the estimated changes in participation
are similar, 19% and 34%. As with air conditioners, the larger increase
corresponds to the subsidy increase from $30 to $110. The estimates



Table 2
RD estimates of the effect of subsidies on program participation.

Subsidy increase Percent of households participating Percent change in
participation

at the threshold

Implied slope Implied price elasticity

At lower subsidy amount At higher subsidy amount

(1) (2) (3) (4) (5) (6)

Panel A. air conditioners

$110 to $170 1.45 1.75 20.6 0.0054 0.88
(0.23) (0.29) (8.7) (0.0023) (0.38)

$30 to $110 1.07 1.55 44.6 0.0069 1.76
(0.23) (0.31) (11.6) (0.0019) (0.49)

Panel B. refrigerators

$110 to $170 1.37 1.63 19.1 0.0047 0.90
(0.11) (0.13) (2.7) (0.0007) (0.13)

$30 to $110 0.89 1.20 34.1 0.0044 1.51
(0.08) (0.10) (4.7) (0.0006) (0.21)

Notes: This table reports sharp RD estimates of the effect of increased subsidies on program participation from four separate regressions. In each regression, the sample includes all house-
holdswithin our preferred bandwidth.We use a 100 kWh bandwidth for air conditioners, and a 50 kWh bandwidth for refrigerators. All regressions include a cubic polynomial in average
historical electricity consumption, normalized to zero at the threshold. Column 2 reports the estimated intercept. Column 3 reports the estimated intercept plus the estimated coefficient
on an indicator variable equal to one for households below the eligibility threshold. Column 4 reports the percent change between the previous two columns. Column 5 reports the change
in the percent of households participating (as a fraction of all households at the threshold) per dollar of subsidy change. Column 6 reports the implied price elasticities evaluated using the
net change in the cost of replacement at each threshold. Standard errors are clustered at the municipality level.
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for refrigerators aremore precisely estimated because of the large num-
ber of households with average historical electricity consumption near
these thresholds.

The increases are clear, but the estimates also imply that a large
number of participants are inframarginal. Most households who just
barely qualified for the $170 subsidy would have participated even if
they had only received $110 andmost householdswho just barely qual-
ified for the $110 subsidywould have participated even if they had only
received $30. The percent inframarginal can be calculated by dividing
Table 3
Alternative bandwidths and specifications.

Panel A: air conditioners
Subsidy increase Sharp RD Fuzzy RD

Cubic Cubic Cubic Local Cubic
Polynomial Polynomial Polynomial Linear Polynomial
125 kWh 100 kWh 75 kWh 50 kWh 100 kWh

$110 to $170 20.7 20.6 29.4 30.7 20.9
(8.4) (8.7) (9.8) (8.9) (9.1)

$30 to $110 56.1 44.6 38.2 49.4 45.7
(13.4) (11.6) (11.9) (13.4) (12.9)

Panel B: refrigerators
Subsidy increase Sharp RD Fuzzy RD

Cubic Cubic Cubic Local Cubic
Polynomial Polynomial Polynomial Linear Polynomial
75 kWh 50 kWh 25 kWh 15 kWh 50 kWh

$110 to $170 22.5 19.1 15.7 15.0 22.6
(2.3) (2.7) (3.2) (3.2) (3.1)

$30 to $110 35.2 34.1 37.5 40.6 41.0
(4.5) (4.7) (6.2) (6.1) (5.7)

Notes: This table reports the estimated percent increase in program participation from 20
separate regressions, corresponding to the four main eligibility thresholds. The
specification and bandwidth used are indicated at the top of each column. The cubic
polynomial estimates using a 100 kWh bandwidth for air conditioners, and a 50 kWh
bandwidth for refrigerators are identical to our estimates in Table 2. The columns on
either side report estimates from two alternative bandwidths. The fourth column
reports estimates using local linear regression with a uniform kernel. The final column
reports estimates from a fuzzy RD specification which scales the estimated change in par-
ticipation by the size of the discontinuity at the eligibility threshold. Standard errors in the
first four columns are clustered at the municipality level and in the last column are block
bootstrap by municipality with 5000 repetitions. See text for details.
column (2) by column (3). For example, when the air conditioner sub-
sidy increases from $110 to $170, our estimates imply that 83%
1:45
1:75 ¼ 0:83
� �

of households are inframarginal. Across thresholds the
percentage inframarginal ranges from 69% to 84%. The estimates are
similar for air conditioners and refrigerators, suggesting that the results
are not driven by idiosyncratic features of a particular appliancemarket.

In column (5) we report the implied slope of demand at the
threshold. These are calculated for each threshold by dividing the
percent change in participation by the subsidy change in dollars.
For each $1 of subsidy change, the share of households replacing
air conditioners increases 0.0054 to 0.0069 percentage points and
the share of households replacing refrigerators increases 0.0044 to
0.0047.8 These slopes appear quite small but it is important to keep
in mind that the base participation rates are very low.

In column (6) we report the implied price elasticities. These are
calculated for each threshold by dividing the percent change in par-
ticipation by the percent change in the price of appliance replace-
ment net of the subsidy. In calculating this net price we use the
average appliance price paid by program participants at the thresh-
old.9 For air conditioners, the elasticity is 0.88 at the first threshold
and 1.76 at the second. For refrigerators, the elasticity is 0.90 at the
first threshold and 1.51 at the second.10

It is important to interpret these elasticities carefully. They describe
how demandwould change in response to a market-wide price change,
8 For the calculations in columns (5) and (6)we calculate the change in the value of the
subsidy incorporating both direct cash payments and the implied cash value of the on-bill
financing (assuming a 25.3% annual interest rate on private borrowing; see Section 3.1).

9 Specifically, we use the average price paid by participants at the low-subsidy side of
each threshold. For air conditioners, these prices were $402 at the 175 kWh threshold
and $402 at the 200 kWh threshold. For refrigerators the prices were $425 at the
500 kWh threshold and $427 at the 750 kWh threshold. We calculate all elasticities as
arc elasticities, and thus use for the denominator in these calculations the midpoint be-
tween the high-subsidy and low-subsidy prices.
10 We are reporting uncompensated elasticities, but compensated elasticities are likely
to be very similar. These subsidies represent a tiny share of the total household budget
for these households so income effects are likely negligible. One approach for assessing
the potential magnitude of income effects is to test for changes at the thresholds in the
price of the appliance that is purchased. We observe no significant change in the price of
the appliance purchased at three of the four thresholds. At the fourth, the average price in-
creases by about 2%, and the increase is only weakly statistically significant.



Table 4
Inferring the fraction non-additional.

Projection based on
linear demand

Projection based
on elasticities

(1) (2)

Fraction 53.6% 43.3%
Non-additional (4.8) (6.0)

Average payment $328 $269
Per induced replacement (36.7) (30.2)

Notes: In this table we use the RD estimates from the thresholds to infer what fraction of
participants would have replaced their appliances with zero subsidy. For the average pay-
ment per induced replacement we divide total subsidy payments by the implied total
number of additional participants. See text for details.

77J. Boomhower, L.W. Davis / Journal of Public Economics 113 (2014) 67–79
not the elasticity of demand for a particular appliance model or for
all appliances made by a particular manufacturer. It is also worth em-
phasizing that this is the elasticity of demand for appliance replacement,
which is different from demand for initial purchase. Still, the estimates
appear quite large. They imply that appliance replacement is price-
responsive, and that the program caused a large number of appliance
replacements that otherwise would not have happened.

These estimates are valuable not only in assessing energy-efficiency
subsidies, but also for predicting appliance replacement more broadly.
Wolfram et al. (2012) argue that the demand for residential appliances
will have an enormous influence on future energy consumption growth
in low- and middle-income countries. Appliance prices have been fall-
ing for decades and our estimates imply that continued decreases will
accelerate the rate at which appliances are replaced. If households are
more quickly replacing appliances this means that improvements in
energy-efficiency will more quickly be reflected in the appliance stock.
5.3. Alternative specifications

Table 3 reports regression estimates from five alternative specifica-
tions. For each specification we report the estimated percent change
in participation at each threshold. In the first three columns, we vary
the size of the bandwidth used with the cubic polynomial. The second
column reports our baseline estimates, identical to the estimates re-
ported in Table 2. The first and third columns assess the sensitivity of
our estimates to larger and smaller bandwidths. In the fourth column,
we use local linear regression with a uniform kernel and a small band-
width. Overall, the results are similar across all four columns. Moreover,
there is no consistent pattern. Aswemove across bandwidths and spec-
ifications, some point estimates increase while others decrease.

The last column reports estimates from a fuzzy RD specification. In
this specification, we scale the estimates by the size of the discontinuity
at the threshold following Hahn et al. (2001) and Battistin et al. (2009).
Specifically, we run a first stage regression of an indicator for the larger
subsidy (1[Larger Subsidy]) on (1[Below Threshold]) and a cubic polyno-
mial of average historical consumption, g(X),

1 Larger Subsidy½ �i ¼ ϕþ g Xið Þ þ γ1 Below Threshold½ �i þ ϵi: ð4Þ

We then divide our baseline estimates by γ to remove any bias
caused bymeasurement error (see Section 4.2.1 and the Online Appen-
dix). The estimates are very similar with the fuzzy RD specification. The
air conditioner estimates are essentially identical to the sharp RD esti-
mates, consistent with the near perfect discontinuity observed in
Fig. 2a–c. For refrigerators, the scaling increases the point estimates
modestly, consistent with the graphical evidence in Fig. 2d–f, which ex-
hibits a somewhat less perfect discontinuity.
6. Discussion

6.1. Inferring the fraction non-additional

These estimates are directly relevant for program design because
they show how adjustments in program generosity would have
changed participation levels. We are also interested in what program
participation would have been with no subsidy whatsoever. Table 4 re-
ports estimates of the fraction of participants that are non-additional
under two different assumptions about the shape of the demand curve.

In Column (1) we calculate the fraction of participating households
who are non-additional by using the slope estimates from Table 2
to predict appliance replacement at the unsubsidized price. For par-
ticipants who received the $170 cash payment, we use the slope cor-
responding to the threshold between $110 and $170, and for
participants who received $30 or $110, we use the slope corresponding
to the threshold between $30 and $110. The implied slopes are quite
similar across thresholds, however, so the results are not particularly
sensitive towhich slopeweuse. Under these assumptions our estimates
imply that 54% of participants were non-additional, in that they would
have replaced their appliances even with no subsidy whatsoever. With
this level of non-additionality, the average payment amount per in-
duced replacement is $328, a littlemore than twice the average subsidy
amount ($152).

In Column (2), we infer the fraction of participants that are non-
additional by using the estimated elasticities, rather than the estimated
slopes. With this approach our estimates imply that 43% of participants
are non-additional, so that the average payment per induced replace-
ment is $269. Of the two alternatives we prefer to use the estimated
slopes because this assumption about the demand curve better fits the
observed behavior at the thresholds. Whereas the estimated slopes
are similar across thresholds, the estimated elasticities are not. For
both appliance types the estimated elasticities are considerably larger
at the $30 to $110 threshold than at the $110 to $170 threshold,
which is what one would expect with linear demand.

It is worth emphasizing that both of these approaches rely on strong
assumptions about demand. By using our estimates of these slopes and
elasticities to predict behavior away from the thresholds,we are assum-
ing that behavior at the thresholds is representative of all households.
This is a mild assumption for participants who are close to thresholds
but is a considerably stronger assumption for participants far away
from a threshold like those at the beginning of the $170 tier. We find
it somewhat reassuring that the slope estimates are similar across
thresholds. Nonetheless, these projections should be viewed with
more caution than the RD estimates from which they are derived.

6.2. Implications for cost-effectiveness and welfare

Depending on whether one uses the slopes or the elasticities, we
find that 43–54% of participants are non-additional. So it costs on av-
erage $269 to $328 in subsidies per induced replacement, instead of
$152 in a naive analysis that treats all participants as additional.
Thus, accounting for non-additional participants approximately
doubles the program cost per unit of reduced energy consumption.
Related measures of cost-effectiveness such as the program cost
per ton of carbon dioxide abated would also approximately double.

Non-additionality also affects the full welfare calculation. In this
section we provide a brief sketch of such a calculation, following
the framework outlined in Section 2. To calculate the benefits of ap-
pliance replacement, we value the reductions in greenhouse gases
and local air pollutants from each appliance replacement. As we ex-
plain in detail in the Online Appendix, we use the pre-program engi-
neering estimates of 2900 kWh in lifetime electricity savings per
replacement. This is equivalent to 1.6 tons of avoided carbon dioxide
emissions so applying a $34 social cost of carbon as in U.S. IAWG
(2013), the climate benefits are $53 per replacement. We also
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include $54 per replacement of benefits from reduced local air
pollution.

The program costs can be divided into categories A, B, and C, as in-
dicated in Fig. 1. Rectangle A represents payments to non-additional
participants. Private costs are zero for these participants, since they are
doing something theywould have done anyway. But there is still the ef-
ficiency cost associated with financing the subsidies, which we called η
in Section 2. This parameter η represents the net welfare cost of the rev-
enue financing and tax interaction effects. For this simple back of the
envelope calculation, we assume that η equals 1.3, following Goulder
et al. (1997) and other studies in the literature (see the Online Appen-
dix for details). We find that about half of the participants are non-
additional and the average subsidy amount was $152. So, transferring
funds to non-additional participants imposed an efficiency cost of
about $46 per induced replacement.

Rectangle BC represents payments to induced participants. Fi-
nancing these payments costs an additional $46 per replacement,
again using 1.3 for the efficiency cost. In addition, there are the pri-
vate costs of adoption. These costs are shown as Triangle C. If de-
mand is linear, then this area is half the total amount of subsidies
paid to induced participants. The average subsidy amount was
$152, so the private cost of replacement averaged $76. Summing up
these back-of-the-envelope benefits and costs, we find that each in-
duced replacement yielded benefits of $107 at a cost of $168.

These calculations highlight the importance of distinguishing be-
tween additional and non-additional participants. This can be seen
most starkly by comparing these numbers to what one would have
calculated with a naive analysis that assumes all participants are ad-
ditional. In the naive analysis, the efficiency cost of financing the pro-
gram is much smaller: $46 per replacement rather than $92. Private
costs are the same ($76), so the total cost is $122 per replacement.
This is much closer to the benefits of $107. Thus, in the naive analysis,
the program appears much closer to welfare-improving.

These values should be interpreted carefully because they are based
onmany strong assumptions. These calculations also ignore some com-
ponents of benefits and costs, such as the benefits of properly disposing
of refrigerants and the administrative costs of the program. They also
rely on engineering estimates of electricity savings, which recent work
suggest may have been overly generous (Davis et al., forthcoming).
The goal of this simple back-of-the-envelope calculation is to tie our em-
pirical results to the economic model and provide an example for how
to think about welfare analysis in this setting.

Two of the most important uncertain parameters are the social cost
of carbon (SCC) and the efficiency cost of financing the subsidies (η).
The program becomes more attractive with a high SCC and low η. Still,
it would have taken values near the extremes of the range of available
estimates in the literature in order to make the program welfare-
improving. Holding constant our other assumptions, the programbene-
fitswould exceed the costs only if the SCCwere greater than $73 per ton
or if η were less than 1.1.11

These results raise questions about whether energy-efficiency pro-
grams could be designed differently to target payments based on ex-
pected additionality. For example, if immutable, verifiable household
and firm characteristics could be determined to predict adoption with
and without the subsidy, payments could be made conditional on
these characteristics.12 The scope for this type of targeting will differ
widely across contexts and there are important constraints that may
11 An SCC of $73 per ton is above the central range of values presented in U.S. IAWG
(2013), but less than the 95th percentile estimate of $129. For η to be less than 1.1, the
MCPF would have to be at the bottom of the range of estimates of 1.11 to 1.56 for the
United States (Bovenberg and Goulder, 2002), or the tax interaction effect would have
to be large.
12 De Janvry and Sadoulet (2006) propose such targeting for a conditional cash transfer
program in Mexico. Using experimental data, they conclude that making school atten-
dance subsidies a function of child's gender, birth order, and distance traveled to school
could decrease the program cost per additional child attending school by about 23%.
limit targeting in practice. Income-based targeting, for example, can
be difficult and expensive to enforce, and geographic targeting may be
unacceptable politically. Still, even in programswhere explicit targeting
is limited, softer versionsmay be possible. As a simple example, perhaps
program advertisements can be tailored towards demographic seg-
ments where adoption in the absence of the program would be low.

6.3. Program-wide effects

RD is well-suited for highly-localized predictions about how par-
ticipation would have changed under alternative subsidies. But we
have also stressed that RD is not a panacea and cannot answer all
of the questions that could be answered, for example, with a large-
scale RCT. A particularly important weakness is the inability of RD
to measure broader program-wide effects. In providing subsidies
the government is providing information and an explicit endorsement
of particular energy-efficient technologies. This focuses attention on
these products, potentially influencing replacement decisions above
and beyond the direct impact of the subsidies themselves.

Through program-wide effects even non-participants may have
their behavior influenced by a program. For example, potential partici-
pants may investigate a program only to learn that they are ineligible
for a subsidy. However, in learning about the program they focus their
attention on energy-efficiency, potentially becoming more likely to
adopt the subsidized technology even if they do not end up receiving
any monetary incentive whatsoever.

These broader program impacts are difficult to measure empirically.
Ideally, one would measure program-wide effects using a large-scale
RCT in which randomization was done not over households, but over
geographic areas with subsidy generosity varied across areas. This has
been done with cash transfer programs (Baird et al., 2012), and given
sufficient resources and public cooperation could be implemented
with energy-efficiency programs. Experiments could also be designed
to directly measure spillovers through social networks, as in Miguel
and Kremer (2004) and similar studies.

7. Conclusion

It is hard to provide incentives for socially-beneficial behavior with-
out substantial transfers to thosewhowould have done these behaviors
anyway. Subsidies for energy efficiency are a key example, both because
the potential external benefits are large and because the first-best poli-
cies seem, for the moment, to be impossible politically. Empirical esti-
mates of additionality are critical, however, because if a large enough
fraction of participants is non-additional then a program will not be
welfare improving.

Our RD analysis avoids many of the measurement and endogeneity
problems in previous studies by focusing on behavior within narrow
windows around eligibility thresholds. Although these thresholds
make RD a natural approach to causal inference, we are not aware
of any previous RD analyses of additionality in this context. We see
a broad potential for applying our conceptual framework, estimating
equations, and tests of strategic behavior in evaluating similar pro-
grams. Although the exact eligibility requirements vary across pro-
grams, it is typical to see discontinuous thresholds of the type
observed here.

The results are striking. We find that most households would
have participated even for much lower subsidy amounts. Across
thresholds, more than two-thirds of participants are inframarginal
and the estimates imply that about half of all participants would
have replaced their appliances even with no subsidy whatsoever.
These non-additional participants add substantial cost to the pro-
gram without yielding any real reduction in energy use.

These findings are relevant to current energy policy around the
world, which is focusing increasingly on energy efficiency. Billions
of dollars are spent each year on programs like this one that provide
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subsidies for households and firmswho adopt energy-efficient technol-
ogies. Reliable empirical estimates of the benefits and costs of these
policies are essential and using RD to measure changes in behavior at
eligibility thresholds can be an important part of these analyses.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jpubeco.2014.03.009.
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